CSM OrthPLS


Performs Orthogonal Partial Least-Squares analysis on matrix X.

Utilises the mjrMainO2PLS function written by Mattias Rantalainen.

Usage

model = csm_orth_pls( spectra, Y );

model = csm_orth_pls( spectra, Y, 'num_pred_comp', num_pred_comp, 'num_Y_orth_comp', num_Y_orth_comp, 'num_cv_rounds',num_cv_rounds, 'cvType',cvType, 'scale_type',scale_type, 'cv_frac',cv_frac, 'model_type',model_type, 'cv_pred',cv_pred, 'orth_pls_type',orth_pls_type, 'largeBlockSize',largeBlockSize);

Arguments (* = required)

VariableTypeDefault ValueDescription
*spectracsm_spectraNonecsm_spectra object containing spectral matrix.
*Ym*1NoneMatrix of predictors - Orthogonal components (For discriminant analysis this is a vector of 0/1's to define class)
num_pred_comp1*11Number of predictive components
num_Y_orth_comp1*13Number of Y-orthogonal components (OC in X). The number of components in num_pred_comp+numYorthComp should be kept to a minimum to prevent overfitting
num_cv_rounds1*17Number of cross-validation rounds. Often set to zero
scale_typestr'mc''uv' for unit variance scaling, 'pa' for pareto, 'mc' for mean centred, 'none' for no scaling
model_typestr'da''da' for discriminant analysis, 're' for regression. if 'da', sensitivity and specificity will be calculated

Returns

VariableTypeDescription
csm_orth_plscsm_wrappercsm_wrapper with some stored inputs, the outputs and metadata.
csm_orth_pls.output.dastrif model is of model_type='da' (discriminant analysis
csm_orth_pls.output.o2pls_modelstructthe full o2pls model with all it's parameters
csm_orth_pls.output.cvstructcross-validation results, such as Q^2 values,
csm_orth_pls.output.releasestrversion information

Reference

O2PLS

Copyright Imperial College London 2019